

Cannabis and Hemp Potency and Impurities Analysis

- Sample Homogenization and Grinding
- Sample Extraction and Digestion
- Instrument Preparation
- Analysis

spex.com

Phone: +1.732.549.7144 • +1.800.LAB.SPEX Fax: +1.732.603.9647 USMet-CRMSales@antylia.com Connect with us

Spex CertiPrep is an Antylia Scientific company. Find out more at antylia.com.

Cannabis and Hemp Potency and Impurities Analysis

Spex is a market leader of high quality, innovative inorganic and organic certified reference materials, sample preparation equipment and supplies for a diverse range of analytical techniques including chromatography, spectroscopy and PCR. Our products are used in pharma, biomedical, food, beverage, and botanicals laboratories worldwide. In the last ten years, we have become experts advising the cannabis and hemp industries on cannabis sample preparation and standards. Our commitment to our customers is to satisfy their increasing requirements for the highest quality of product, delivery and service.

Table of Contents

Sample Homogenization and Grinding
Sample Extraction and Digestion
Instrument Preparation
Analysis

Sample Homogenization and Grinding

Sample Extraction and Digestion

Instrument Preparation

Analysis

Cannabis and Hemp Potency and Impurities Analysis Step 1 - Sample Homogenization and Grinding

Before one can begin analytical testing of various forms of cannabis and related edibles, each sample must be properly selected and prepared. Improper sample collection and preparation can lead to inaccurate and flawed results. Cannabis and hemp samples must be processed into a form which allows for extraction, digestion and ultimately instrumental chemical analysis.

Sample processing involves reducing particle size to ensure homogeneity and easy extraction into a suitable matrix for testing. The most common method for obtaining a homogeneous sample is grinding or comminution. Grinding samples produces reduced particle size in order to increase accuracy and decrease uncertainty.

Particle size reduction is accomplished by either crushing or grinding using forces of impact, attrition, shearing, or compression. Particle reduction of solids occurs in multiple stages starting with the accumulation of defects or stresses in a concentrated location, with increasing strain on a solid which ultimately divides the solid into pieces. The most efficient grinding system is one that applies the minimum amount of energy to rupture the material without adding excess energy or heat. Energy is required to reduce particle size, but it also generates heat which can alter the state of the sample or lead to degradation of the sample. It also then applies the ability to reduce heat generation or negate the effects of heat on the grinding system, which allows for application of more energy into the system to create a more efficient particle size reduction. Spex offers solutions for efficient grinding using cryogenic technologies. The reduction in temperature of a material facilitates grinding, and decreases heat and energy used.

Freezer/Mills use liquid nitrogen to increase the benefits of cryogenic grinding by negating the plastifying effects of water in samples like cannabis and hemp. Cryogenic grinding also leads to better laboratory analysis because the lack of heat prevents decomposition of less stable analytes, and improves the retention of volatile components such as pesticides, terpenes and cannabinoids.

Freezer/Mill [®]	
Description	Part #
Freezer/Mill Cryogenic Grinder, 115 V/60 Hz, CE Approved	6775-115
Freezer/Mill High Capacity Cryogenic Grinder, 115 V/60 Hz	6875-115
Freezer/Mill High Capacity with Auto-Fill, 115 V/60 Hz	6875A-115
Freezer/Mill Dual Chamber Cryogenic Grinder, 115 V/60 Hz	6875D-115

Freezer/Mill [®] – Accessory Packages and Kits	
Description	Part #
Small Grinding Vial Accessory Package	6870S
Large Grinding Vial Accessory Package	6870L

Freezer/Mill® – Extractors	
Description	Part #
Extractor for Small Vials (Lever)	6756
Extractor for Large Vials (Lever)	6808
Extractor/Vial Opener for Small Grinding Vials	6754
Extractor/Vial Opener for Large/Mid-Size Grinding Vials	6804
Vial Impactor Extractor for Freezer/Mill Vials	6791

Freezer/Mill® – Liquid Nitrogen Handling	
Description	Part #
Cryogenic Gloves, Size Small	6900S
Cryogenic Gloves, Size Medium	6900M
Cryogenic Gloves, Size Large	6900L
Cryogenic Gloves, Size Extra-Large	6900XL
Short Cryogenic Transfer Hose	6906
Long Cryogenic Transfer Hose	6907

Freezer/Mill [®] – Racks and Holders	
Description	Part #
Vial Rack for Small Grinding Vials	6755
Vial Rack for Large Grinding Vials	6805

Freezer/Mill [®] – Sample Adapters	
Description	Part #
Vial Holder for Large Freezer/Mill	6807
Mid-Size Extractor Kit	6808M
Mid-Size Grinding Vial Adapter (Holds 6881 & 6883)	6887
Mid-Size Grinding Vial Adapter (Holds 6885)	6888
Mid-Size Grinding Vial Accessory Package	6870M-1

Freezer/Mill [®] – Vials and Vial Sets	
Description	Part #
Small Grinding Vial Set	6751
Mid-Size Grinding Vial Set	6881
Mid-Size Poly-Vial Grinding Vial Set	6885
Large Grinding Vial Set	6801
Stainless Steel Grinding Vial Set	6781S
Large Steel Vial Set with O-Rings	6803
Set of 10 O-Rings for 6803 Vial Set	6803S
Small Stainless Steel Impactor for 6751	6751P
Mid-Size Stainless Steel Impactor for 6881	6881P
Large Stainless Steel Impactor for 6801	6801P
Small Stainless Steel End Plugs for 6751	6751E
Mid-Size Stainless Steel End Plugs for 6881	6881E
Mid-Size Polycarbonate End Plugs for 6885	6885E

Freezer/Mill [®] – Vials and Vial Sets (cont'd)	
Description	Part #
Large Stainless Steel End Plugs for 6801	6801E
Large Stainless Steel End Plugs for 6803	6803E
Mid-Size Vial Adapter for 6804 Extractor/Vial Opener	6884
Mid-Size Polycarbonate Encapsulated Impactor for 6885	6885P
Small Polycarbonate Center Cylinders; Pack of 4	6751C4
Small Polycarbonate Center Cylinders; Pack of 20	6751C20
Mid-Size Polycarbonate Center Cylinders; Pack of 4	6881C4
Mid-Size Polycarbonate Center Cylinders; Pack of 20	6881C20
Large Polycarbonate Center Cylinders; Pack of 4	6801C4
Large Polycarbonate Center Cylinders; Pack of 20	6801C20
Large Stainless Steel Center Cylinder	6802

Geno/Grinder [®]	
Description	Part #
MiniG, 115 V/60 Hz, 230 V/50 Hz, CE Approved	1600
Geno/Grinder, 115 V/60 Hz, CE Approved	2010-115

Geno/Grinder® – Grinding Media	
Description	Part #
Grinding Balls 3/8" (9.5 mm), Pack of 100	2155
Grinding Balls 7/16" (11 mm), Pack of 100	2156
Grinding Balls 1/2" (13 mm), Pack of 50	2157
Small Low-Chrome Grinding Vial Set	6771
Small Low-Chrome Steel End Plugs	6771E

Geno/Grinder [®] – Racks and Holders	
Description	Part #
Holder for Tall 15 mL Vials	1685
Holder for Tall 50 mL Vials	1686
Foam Holder for 15 mL Centrifuge Tubes	2197
Foam Holder for 50 mL Centrifuge Tubes	2196-16-PE
Polyethylene Foam Holder for 2258 Jars	2259

Geno/Grinder [®] – Vials and Vial Sets	
Description	Part #
12 oz (355 mL) Clear Plastic Jar	2248
25 oz (750 mL) PET Jar	2258

Cannabis and Hemp Potency and Impurities Analysis Step 2 - Sample Extraction and Digestion

The next step in the analysis process is removing the analytes from the sample into a form that can be tested by the laboratory. Some of the most common methods of sample processing are extraction and digestion. For inorganic analytes, sample digestion is most often used to

break down a physical sample into a homogeneous liquid free of solids using an acid solution. The acid decomposes the organic matter of the sample and leaves the elemental components in a solution. This sample can then be either further processed or diluted for elemental analysis, for instance, heavy metals in cannabis and hemp.

If the analytical targets are organic compounds, other types of separation procedures may be needed, for example, extraction or chromatographic separation. The primary mode of organic sample preparation is extraction in which compounds are leached or transferred from the sample matrix into organic solvents. The target compounds are removed from the sample matrix and partitioned to the extraction medium using simple organic solvents such as alcohols and ethers. In some cases, the extraction solvent can be used directly in instrumental analysis. In some cases, the matrix has to be changed, so the extraction solvent is evaporated off and the residue is dissolved in a more appropriate solvent. In other cases, the target analytes must be separated from other material extracted from the sample. Many different types of chromatographic procedures can be used to carry out this type of purification, prior to analysis. This type of chromatographic procedure can be used to isolate targets, or clean up matrix rich samples from interfering compounds such as fatty acids or carbohydrates. Spex has a range of preparation products to assist the cannabis and hemp laboratory researcher in the preparation of samples. We carry filters, chromatography media, columns, and solvents all designed with the laboratory in mind.

Sample Extraction and Digestion

Chromatography Columns, Accessories and Solvents

Columns	
Description	Part #
Chromatography Column with 1 Fixed and 1 Adjustable Endpiece, 50 x 250 mm	11944-71
Chromatography Column with 2 Fixed Endpieces, 50 x 250 mm	11944-72
Chromatography Column with 1 Fixed and 1 Adjustable Endpiece, 50 x 500 mm	11944-80
Chromatography Column with 2 Fixed Endpieces, 50 x 500 mm	11944-81

Bulk Sorbent	
Description	Part #
Flash Chromatography Bulk Sorbent, C18, 100 g	06475-97
Flash Chromatography Bulk Sorbent, C18, 1 kg	06475-98
Flash Chromatography Bulk Sorbent, Silica, 1 kg	06475-89
Flash Chromatography Bulk Sorbent, Silica, 5 kg	06475-90

Cartridges, Racks, Plates and Manifolds	
Description	Part #
SPE Cartridges, Silica, 3 mL, 0.5 g, Pack of 50	10937-00
SPE Cartridges, C18, 6 mL, 1 g, Pack of 50	10937-15
Developing Tanks Aluminum Rack, Capacity: Six 10 x 10 cm Plates	34105-40
Preparative Uniplates, 20 x 20 cm UV/Silica G, 1,000 mm Thick, 15 μm, Pack of 25	34103-05
Aluminum-Backed TLC Plate with GF254 Indicator, Silica, 200 x 200 mm, Pack of 20	06475-87
Column Sample Processing Manifold, 24 Columns, 16 x 100 mm Rack	06479-29
Stopcock for Sample Processing Manifold, Pack of 12	06479-65
Column Sample Processing Manifold, 12 Columns, 16 x 100 mm Rack	06480-04

Sample Extraction and Digestion

Chromatography Columns, Accessories and Solvents

Solvents	
Description	Part #
Acetone HPLC Grade, 1 L	88406-18
Acetone HPLC Grade, 4 L	88406-19
Acetone ACS Grade, 1 L	88406-12
Acetone ACS Grade, Glass Bottle, 4 L	88406-16
Acetonitrile, HPLC Grade, 1 L	88405-44
Acetonitrile, HPLC Grade, 4 L	88405-45
Ethyl Acetate, ACS Grade, 4 L	88405-51
Isopropyl Alcohol (IPA), 70% (v/v) Aqueous Solution, 1 Gallon	88400-48
Isopropyl Alcohol (IPA), ACS Grade, 1 L	88405-66
Isopropyl Alcohol (IPA), ACS Grade, 4 L	88405-69
Methanol, HPLC Grade, 1 L	88405-93
Methanol, HPLC Grade, Amber Glass Bottle, 4 L	88401-41
Reagent Alcohol, ACS Reagent Grade, Anhydrous, Absolute, 1 Gallon	88400-66

Cannabis and Hemp Potency and Impurities Analysis Step 3 - Instrument Preparation

Once the sample has been homogenized and extracted, it's time to carry out instrumental analysis to determine the concentration of the various components. However, before this is done, it's extremely important to make sure your instruments are in perfect working order.

Before testing, analysts should select and install the proper columns. It is also important to check the condition of other instrument consumables, such as lamps and detectors. These should be inspected and replaced if damaged or compromised.

It may also be beneficial to filter the sample to remove particulates and ensure the sample delivery lines in the instrument are not subject to blockage. It may be sufficient to decant extracted samples to appropriate vials for testing. Spex can provide many of your instrument's needs such as columns, lamps and filters, in addition to vials, to fit many of the most commonly used autosamplers.

Instrument Preparation

Vials, Lamps and Filtration

Vials and Accessories	
Description	Part #
2 mL Glass Vial, 9 mm Short Thread, Pack of 1,000	98702-65
2 mL Glass Vial with Label, 9 mm Short Thread, Pack of 1,000	98702-67
2 mL Wide Opening Crimp Glass Vial, 11 mm, Pack of 1,000	98705-53
2 mL Wide Opening Crimp Glass Vial with Label and Lines, 11 mm, Pack of 1,000	98705-57
9 mm Short Thread Cap, Open Transparent Polypropylene, Rubber/PTFE Septum, Pack of 1,000	98703-33
9 mm Short Thread Cap, Open Blue Polypropylene, Rubber/PTFE Septum, Pack of 1,000	98703-35
9 mm Short Thread Cap, Open Blue Polypropylene, UltraClean™ Silcone/Red PTFE Septum, Pack of 1,000	98703-48
Silver Aluminum Crimp Cap, 11 mm Diameter, Rubber/Butyl/PTFE Septum with Center Hole, Pack of 1,000	98704-34
Silver Aluminum Crimp Cap, 11 mm Diameter, Silicone/PTFE Septum with Hole, Pack of 1,000	98704-48
F-120X Standard Knurl Fingertip - One-Piece, Natural PEEK, 1/16" Outer Diameter Tubing, 10-32 Coned, Pack of 10	02013-41
HPLC Column, C18, 5 μm, 250 mm Length x 4.6 mm Inner Diameter	06481-96

Deuterium Lamps	
Description	Part #
Deuterium Detector Lamp Compatible with Agilent 1100 VWD Detectors	11941-11
Deuterium Detector Lamp Compatible with Agilent 1100/1200 DAD (G1315/G1365 A & B Series)	11941-13
Deuterium Detector Lamp for Waters 2487	11941-36
Deuterium Detector Lamp for Shimadzu SPD-10A, AVP, AV, AVVP, M10AVP, 20A, 20AV	11941-26

Filtration	
Description	Part #
KX Filtration System, 500 mL/2 L	12918-14
KX Nylon Syringe Filter, 4 mm Diameter, 0.45 μ m, Pack of 100	12915-78
KX Nylon Syringe Filter, 25 mm Diameter, 0.45 μm, Pack of 100	12915-90
KX PTFE Syringe Filter, 4 mm Diameter, 0.45 μm, Pack of 100	12916-58
KX PTFE Syringe Filter, 25 mm Diameter, 0.45 μm Diameter, Pack of 100	12916-69
KX PTFE Membrane Filter, 47 mm Diameter, 0.45 μm Diameter, Pack of 100	12917-97
KH Nylon Membrane Filter, 47 mm Diameter, 0.45 μm, Pack of 100	12917-79

Cannabis and Hemp Potency and Impurities Analysis Step 4 - Analysis

Once the sampling process is complete, the sample is ready for analysis. Depending on the nature of the analytes, this will be carried out by gas, liquid chromatography or ICP-OES (or MS). The results achieved by these methods can vary from day to day, due to variations in all

sorts of instrumental parameters, as well as small variations in sample size. In order to assure consistent and accurate results, analytical chemists use standards, which contain known concentrations of the same substance being analyzed. Standards can be used to confirm the identify of each peek in a chromatogram (qualitative analysis), as well as to calculate the exact concentration of each component (quantitative analysis).

Certified standards, also known as certified reference materials (CRMs), are materials produced by accredited labs, such as Spex. Standards in this class follow strict ISO guidelines, and all of the concentrations of analytes are reported on certificates, along with a measure of statistical uncertainty. The analyst compares the observed response in their sample with the response measured for the CRM, and uses this relationship to determine the concentration of the sample, within the range of uncertainty indicated on the certificate. CRMs can also be used to ensure all of the analytical instrumentation is working as expected. Analytically, chemists routinely check their instruments with a calibration standard to ensure their equipment is producing consistent data on a daily basis. Spex offers a complete catalog of standards for a laboratory's full range of testing of expected analytes, impurities, as well as instrument calibration.

Analysis

Certified Reference Materials

Pesticide Residues	
Description	Part #
Organochlorine Pesticides Mix A, 18 Components at 200 μg/mL in Acetone, 1 mL	5252-PA
Organochlorine Pesticides Mix B, 15 Components at 200 μ g/mL in Acetone, 1 mL	5252-PB
Nitrogen-Phosphorus Pesticides Mix D, 9 Components at 200 μ g/mL in Acetone, 1 mL	5252-PD
Nitrogen-Phosphorus Pesticides Mix E, 3 Components at 200 µg/mL in Acetone, 1 mL	5252-E
Organochlorine Pesticides Mix in Benzene, 1 mL	625-PH

Carbamate Pesticides	
Description	Part #
Analyte Mix A in Acetonitrile, 1 mL	5311-A10

Pyrethroids/Pesticides	
Description	Part #
Allethrin at 1,000 μg/mL in Methanol-P&T, 1 mL	S-4240
Bifenthrin at 1,000 μg/mL in Acetone, 1 mL	S-494
Bifenthrin at 1,000 μg/mL in Acetonitrile, 1 mL	S-494-ACN
Deltamethrin at 1,000 μg/mL in Methanol-P&T, 1 mL	S-3977
Fenpropathrin at 1,000 μg/mL in Acetone, 1 mL	S-5781
tau-Fluvalinate at 1,000 μg/mL in Acetone, 1 mL	S-4161
trans-Permethrin (mix of isomers) at 1,000 μg/mL in Acetone, 1 mL	S-5732
d-(cis-trans)-Phenothrin at 1,000 μg/mL in Acetone, 1 mL	S-3041
Prallethrin at 1,000 μg/mL in HPLC Grade Acetonitrile, 1 mL	LCS-5783
Resmethrin at 1,000 μg/mL in Acetone, 1 mL	S-3252
Tetramethrin at 1,000 μg/mL in Acetone, 1 mL	S-4251-AC
Tetramethrin at 1,000 μg/mL in Methanol-P&T, 1 mL	S-4251

Analysis

Certified Reference Materials

AOAC Pesticide Standards	
Description	Part #
AOAC Pesticide Mix 1 with 23 components in LC/MS Acetonitrile, 1 mL	AOAC-PEST-1
AOAC Pesticide Mix 2 with 12 components, 100 µg/mL in LC/MS Acetonitrile, 1 mL	AOAC-PEST-2
AOAC Pesticide Mix 3 with 14 components, 100 µg/mL in LC/MS Acetonitrile, 1 mL	AOAC-PEST-3
AOAC Pesticide Mix 4 with 16 components, 100 µg/mL in LC/MS Acetonitrile, 1 mL	AOAC-PEST-4
AOAC Pesticide Mix 5 with 5 components, 100 µg/mL in LC/MS Acetonitrile, 1 mL	AOAC-PEST-5
AOAC Pesticide Mix 6, Dibrom (Naled), 100 µg/mL in HPLC Acetonitrile, 1 mL	AOAC-PEST-6

Terpenes		
Description	Part #	
Bisabolene at 1,000 μg/mL in Methanol-P&T, 1 mL	S-502	
Borneol at 1,000 μg/mL in Methanol-P&T, 1 mL	S-4570	
Camphene at 1,000 μg/mL in Methanol-P&T, 1 mL	S-710	
3-Carene at 1,000 μg/mL in Methanol-P&T, 1 mL	S-4171	
2-Ethyl-Fenchol at 1,000 μg/mL in Ethanol, 1 mL	S-4952	
Eucalyptol at 1,000 μg/mL in Methanol, 1 mL	S-4352	
Farnese at 1,000 μg/mL in Methanol-P&T, 1 mL	S-1989	
lsoprene at 1,000 μg/mL in Methanol-P&T, 1 mL	S-2300	
(R)-(+)-Limonene at 1,000 μg/mL in Methanol-P&T, 1 mL	S-4021	
Linalool at 1,000 μg/mL in Methanol, 1 mL	S-5133	
Menthol at 1,000 μg/mL in Methanol-P&T, 1 mL	S-4669	
beta-Myrcene at 1,000 μg/mL in Hexane, 1 mL	S-2654	
alpha-Pinene at 1,000 μg/mL in Methanol-P&T, 1 mL	S-4172	
beta-Pinene at 1,000 μg/mL in Methanol-P&T, 1 mL	S-3142	
(+)-Pulegone at 1,000 μg/mL in Methanol, 1 mL	S-5136	
alpha-Terpineol at 1,000 μg/mL in Acetone, 1 mL	S-3356-AC	
alpha-Terpineol at 1,000 μg/mL in Methanol-P&T, 1 mL	S-4145	

Analysis

Certified Reference Materials

Terpenes (cont'd)		
Description	Part #	
CAN-TERP Mix 1 at 100 μg/mL in Methanol, 1 mL	CAN-TERP-MIX1	
CAN-TERP Mix 1 (High Level) at 1,000 μg/mL in Methanol, 1 mL	CAN-TERP-MIX1H	
CAN-TERP Mix 2 at 100 μg/mL in Methanol, 1 mL	CAN-TERP-MIX2	
CAN-TERP Mix 2 (High Level) at 1,000 μg/mL in Methanol, 1 mL	CAN-TERP-MIX2H	
CAN-TERP Kit at 100 μg/mL in Methanol, 1 mL	CAN-TERP-KIT	
CAN-TERP Kit (High Level) at 1,000 μg/mL in Methanol, 1 mL	CAN-TERP-KIT-H	

Flavonoids	
Description	Part #
Flavonoid Standard in Dimethyl Sulfoxide, 1 mL	FLAVIN-1

DEA Controlled Substances		
Description	Part #	
Cannabichromene (CBC) at 1,000 μg/mL in Methanol, 1 mL	S-10248	
Cannabichromenic Acid (CBCA) at 1,000 μg/mL in Acetonitrile, 1 mL	S-11059	
Cannabidiol (CBD) at 1,000 μg/mL in Methanol, 1 mL	S-10241	
Cannabidivarin (CBDV) at 1,000 μg/mL in Methanol, 1 mL	S-10245	
Cannabidivarinic Acid (CBDVA) at 1,000 μg/mL in Acetonitrile, 1 mL	S-11055	
Cannabidolic Acid (CBDA) at 1,000 μg/mL in Acetonitrile, 1 mL	S-10249	
Cannabigerol (CBG) at 1,000 μg/mL in Methanol, 1 mL	S-10246	
Cannabigerolic Acid (CBGA) at 1,000 μg/mL in Acetonitrile, 1 mL	S-10247	
Cannabinol (CBN) at 1,000 μg/mL in Methanol, 1 mL	S-10242	
(-)-delta 8-THC at 1,000 μg/mL in Methanol, 1 mL	S-10261	
(-)-delta 9-THC at 1,000 μg/mL in Methanol, 1 mL	S-10260	
Tetrahydrocannabinolic Acid (THCA) at 1,000 μg/mL in Acetonitrile, 1 mL	S-11056	
Tetrahydrocannabivarin (THCV) at 1,000 μg/mL in Methanol, 1 mL	S-11057	
Tetrahydrocannabivarinic Acid (THCVA) at 1,000 μg/mL in Acetonitrile, 1 mL	S-11058	

Analysis Certified Reference Materials

Residual Solvents		
Description	Part #	
Acetone at 1,000 μg/mL in Methanol-P&T, 1 mL	S-140	
n-Butane at 1,000 μg/mL in Methanol-P&T, 1 mL	S-605	
Ethane at 1,000 μg/mL in Methanol-P&T, 1 mL	S-1880	
Ethanol at 1,000 μg/mL in Methanol-P&T, 1 mL	S-1885	
n-Hexane at 1,000 μg/mL in Methanol-P&T, 1 mL	S-2190	
Methane at 1,000 µg/mL in Methanol-P&T, 1 mL	S-2379	
2-Methylbutane at 1,000 μg/mL in Methanol-P&T, 1 mL	S-2462	
2-Methylpropane at 1,000 μg/mL in Methanol-P&T, 1 mL	S-2555	
n-Pentane at 1,000 μg/mL in Methanol-P&T, 1 mL	S-2975	
Propane at 1,000 μg/mL in Methanol-P&T, 1 mL	S-3145	
2-Propanol at 1,000 μg/mL in Methanol-P&T, 1 mL	S-3165	
Residual Solvent Mix, 24 Components at 1,000 µg/mL in Dimethyl Sulfoxide, 1 mL	USP-RS-C3A	

Heavy Metals		
Description	Part #	
Arsenic at 1,000 μg/mL in 2% HNO3, 125 mL	PLAS2-2Y	
Cadmium at 1,000 μg/mL in 2% HNO3, 125 mL	PLCD2-2Y	
Chromium at 1,000 μg/mL in 2% HNO3, 125 mL	PLCR2-2Y	
Lead at 1,000 µg/mL in 2% HNO3, 125 mL	PLPB2-2Y	
Mercury at 1,000 μg/mL in 10% HNO3, 125 mL	PLHG4-2Y	
Nickel at 1,000 μg/mL in 2% HNO3, 125 mL	PLNI2-2Y	
Thallium at 1,000 μg/mL in 2% HNO3, 125 mL	PLTL2-2Y	
Heavy Metals Testing Kit, 1,000 ug/mL	SPXHM-KIT	

spex.com

Phone: +1.732.549.7144 • +1.800.LAB.SPEX Fax: +1.732.603.9647 USMet-CRMSales@antylia.com

Connect with us

Spex CertiPrep is an Antylia Scientific company. Find out more at antylia.com.

4772AU